Abstract
Abstract
The lunar gravity field is used to estimate and constrain the depth of mass anomalies under 19 major lunar impact basins. We use radial gravitational spectra, consisting of accelerations computed either per spherical harmonic degree or cumulatively, at surface locations to obtain the distribution of the gravity signal with spherical harmonic degree and, by implication, to the likely depth below the surface. The results provide estimates for the maximum likely depths of the primary component to the mass anomalies under 19 basins. We find that the maximum depths of the primary source of mascon gravity on the lunar nearside are deeper than the depths for those on the farside when South Pole–Aitken (SPA) is excluded. All basin mass anomalies on the lunar nearside are in the mantle. The maximum depth of the primary source of the mass anomalies is <80 km, with the exception of SPA, whose dominant mass signature lies at a maximum depth of >200 km beneath the surface. The upper 20 km under all basins is largely devoid of anomalies, reflecting predominantly mixing and relaxation associated with impact melt combined with ejecta fallback, as well as homogenization associated with post-basin formation impact bombardment. Except for SPA, all basin anomalies merge with the deep interior at ∼150 km or below, indicating the depth penetration of disruption of the density structure of the lunar interior associated with impact bombardment.
Funder
NASA Lunar Reconnaissance Orbiter Project, GSFC
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献