Abstract
Abstract
Dwarf planet Ceres is a compelling target for future exploration because it hosts at least regional brine reservoirs and potentially ongoing geological activity. As the most water-rich body in the inner solar system, it is a representative of a population of planetesimals that were likely a significant source of volatiles and organics to the inner solar system. Here we describe possible medium-class (around $1 billion) mission concepts that would determine both Ceres’ origin and its current habitability potential. Habitability is addressed through a combination of geological, geophysical, and compositional investigations by (i) searching for evidence from orbit of past and ongoing geological activity near landforms interpreted as brine-driven volcanic structures and (ii) probing the brine distribution below one of these regions with electromagnetic sounding (in situ). Two approaches were considered for compositional measurements, which address both habitability and origins: (1) in situ exploration at two sites and (2) sample return from a single site. Both concepts targeted material at Occator crater, which is one of the youngest features on Ceres (∼20 Ma) and a site rich in evaporites evolved from recently erupted brine sourced from a region >35 km deep. We conclude that a sample return architecture from these young evaporite deposits offers greater science return by enabling high-resolution analysis of organic matter (trapped in salt minerals) and isotopes of refractory elements for a similar cost and less science risk than in situ analyses. This manuscript describes the six science objectives and the two implementation concepts considered to achieve those objectives.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献