Dark Comets? Unexpectedly Large Nongravitational Accelerations on a Sample of Small Asteroids

Author:

Seligman Darryl Z.ORCID,Farnocchia DavideORCID,Micheli MarcoORCID,Vokrouhlický DavidORCID,Taylor Aster G.ORCID,Chesley Steven R.ORCID,Bergner Jennifer B.ORCID,Vereš PeterORCID,Hainaut Olivier R.ORCID,Meech Karen J.ORCID,Devogele MaximeORCID,Pravec PetrORCID,Matson Rob,Deen Sam,Tholen David J.ORCID,Weryk RobertORCID,Rivera-Valentín Edgard G.ORCID,Sharkey Benjamin N. L.ORCID

Abstract

Abstract We report statistically significant detections of nonradial, nongravitational accelerations based on astrometric data in the photometrically inactive objects 1998 KY26, 2005 VL1, 2016 NJ33, 2010 VL65, 2016 RH120, and 2010 RF12. The magnitudes of the nongravitational accelerations are greater than those typically induced by the Yarkovsky effect, and there is no radiation-based, nonradial effect that can be so large. Therefore, we hypothesize that the accelerations are driven by outgassing and calculate implied H2O production rates for each object. We attempt to reconcile outgassing-induced acceleration with the lack of visible comae or photometric activity via the absence of surface dust and low levels of gas production. Although these objects are small, and some are rapidly rotating, the surface cohesive forces are stronger than the rotational forces, and rapid rotation alone cannot explain the lack of surface debris. It is possible that surface dust was removed previously, perhaps via outgassing activity that increased the rotation rates to their present-day value. We calculate dust production rates of order ∼10−4 g s−1 in each object, assuming that the nuclei are bare, within the upper limits of dust production from a sample stacked image of 1998 KY26 of M ̇ Dust < 0.2 g s−1. This production corresponds to brightness variations of order ∼0.0025%, which are undetectable in extant photometric data. We assess the future observability of each of these targets and find that the orbit of 1998 KY26—which is also the target of the extended Hayabusa2 mission—exhibits favorable viewing geometry before 2025.

Funder

National Science Foundation

NASA ∣ Earth Sciences Division

NASA ∣ Goddard Space Flight Center

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3