Predicting the Effect of Surface Properties on Enceladus for Landing

Author:

Harmon John M.ORCID,Cable Morgan L.ORCID,Moreland Scott J.,Andrade José E.ORCID

Abstract

Abstract The prospect of landing on the surface of Enceladus comes with the question of whether the surface conditions permit selection and certification of one or more safe landing sites in an area of high science value. On Enceladus, the search for biosignatures in plume materials is a high science value objective that correlates with proximity to the south polar terrain, where the plume deposition rate is highest; however, such areas may be unsafe if unsintered particles make the landing site unstable. To investigate this, the surface of Enceladus was modeled using the level set discrete element method. This method models the kinetics and kinematics of large groups of individual ice particles both in contact and sintered together. Using the model, a rigid footpad was initialized at a 1 m s−1 descent just above the ice surface under Enceladus gravity. Parameters studied were the sintering amount, particle size distribution, footpad geometry, and surface slope. The model predicted that some sintering is required for the surface to support a lander; however, too much sintering can cause a lander to bounce. For tests on sloped surfaces, landing could be possible on slopes as steep as 20° for certain conditions, but it is safest to land in areas with a slope angle of 15° or less. While slope angle and sintering level were much more important than footpad geometry, the hemisphere footpad had the best performance (lowest slipping) in most cases compared to the cone or disk.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3