Experimental Investigation of the Acetylene–Benzene Cocrystal on Titan

Author:

Czaplinski EllenORCID,Yu XintingORCID,Dzurilla Katherine,Chevrier VincentORCID

Abstract

Abstract Acetylene and benzene are two common molecules formed in Titan’s atmosphere, and are likely components of the lake evaporites. It is known that these two molecules can form a cocrystal, a molecule with a structure that is unique from that of the component molecules. Thus, we sought to study this cocrystal using an experimental setup that simulates Titan surface conditions (90 K, 1.5 bar). Using Fourier transform infrared (FTIR) spectroscopy, we characterize new spectral absorptions, band shifts, and morphological sample changes associated with this cocrystal from 1 to 2.6 μm, which overlaps with Cassini VIMS wavelength range (0.35–5.1 μm). This is the first study of the resulting acetylene–benzene cocrystal under Titan-relevant temperature and pressure. The cocrystal forms at 135 K and is stable down to 90 K. Our findings can be applied to the cocondensation process in Titan’s atmosphere, as well as the ongoing effort to better characterize the composition and spectral properties of Titan’s lake evaporites. These results can also provide a stepping stone to future surface missions such as Dragonfly, which will closely examine relevant surface materials on Titan.

Funder

NASA Earth and Space Science Fellowship

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3