Polarimetric Decomposition of Near-Earth Asteroids Using Arecibo Radar Observations

Author:

Hickson Dylan C.ORCID,Virkki Anne K.ORCID,Perillat Phil,Nolan Michael C.ORCID,Bhiravarasu Sriram S.ORCID

Abstract

Abstract The polarization state of radar echoes from planetary bodies contains information about the scattering mechanisms present on the surface and thus the near-surface physical properties. Polarimetric radar scatter from complex surfaces, such as those observed for spacecraft-visited near-Earth asteroids (NEAs), is not well understood in terms of relating observed polarimetry to surface properties. Here we present an improved methodology for polarimetric analyses of ground-based radar observations of NEAs, extending techniques derived for larger bodies. We calculate the Stokes vector for delay-Doppler images of NEAs and use this to perform the m-chi decomposition and derive polarimetric products such as the degree of polarization, circular polarization ratio, and degree of linear polarization. We apply this methodology to radar observations of NEAs (53319) 1999 JM8, (101955) Bennu, and (33342) 1998 WT24 obtained by the Arecibo Observatory. We also perform numerical simulations of the m-chi decomposition for irregular boulders to augment the interpretation of the results for NEAs. Our analyses show that significant components of radar echoes are depolarized (random polarization) and linearly polarized. The numerical simulations confirm that depolarization is increased by single scattering from nonspherical wavelength-scale particles. Our analysis suggests that 1999 JM8 is possibly covered in regolith and that surface scatterers dominate the scattering properties of Bennu. The NEA 1998 WT24 displays diverse polarimetric properties, which we reconcile with optical and thermal observations by assuming a fine-grained regolith mantling a rugged, dense interior. In this work, we demonstrate the usefulness of radar polarimetry in characterizing the physical properties of planetary surfaces.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3