Dynamical Evolution of Closely Packed Multiple Planetary Systems Subject to Atmospheric Mass Loss

Author:

Wang 王 Su 素ORCID,Lin 林 D. N. C. 潮ORCID

Abstract

Abstract A gap in exoplanets’ radius distribution has been widely attributed to the photoevaporation threshold of their progenitors’ gaseous envelope. Giant impacts can also lead to substantial mass loss. The outflowing gas endures tidal torque from the planets and their host stars. Alongside the planet–star tidal and magnetic interaction, this effect leads to planets’ orbital evolution. In multiple super-Earth systems, especially in those that are closely spaced and/or contain planets locked in mean motion resonances, modest mass loss can lead to dynamical instabilities. In order to place some constraints on the extent of planets’ mass loss, we study the evolution of a series of idealized systems of multiple planets with equal masses and a general scaled separation. We consider mass loss from one or more planets either in the conservative limit or with angular momentum loss from the system. We show that the stable preservation of idealized multiple planetary systems requires either a wide initial separation or a modest upper limit in the amount of mass loss. This constraint is stringent for the multiple planetary systems in compact and resonant chains. Perturbation due to either impulsive giant impacts between super-Earths or greater than a few percent mass loss can lead to dynamical instabilities.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3