Orbital Characterization of Superbolides Observed from Space: Dynamical Association with Near-Earth Objects, Meteoroid Streams, and Identification of Hyperbolic Meteoroids

Author:

Peña-Asensio EloyORCID,Trigo-Rodríguez Josep M.ORCID,Rimola AlbertORCID

Abstract

Abstract There is an unceasing incoming flux of extraterrestrial materials reaching the Earth atmosphere. Some of these objects produce luminous columns when they ablate during the hypersonic encounter with air molecules. A few fireballs occur each year bright enough to be detected from space. The source of these events is still a matter of debate, but it is generally accepted that they are of sporadic origin. We studied the NASA-JPL Center for NEOs Studies (CNEOS) fireball database to infer the dynamic origin of large bolides produced by meter-sized projectiles that impacted our planet. These likely meteorite-dropping events were recorded by the US Government satellite sensors. We estimated the false-positive rate and analyzed the time evolution of multiple orbit dissimilarity criteria concerning potential associations with near-Earth objects and meteoroid streams. We found that at least 16% of the large bolides could be associated with meteoroid streams, about 4% are likely associated with near-Earth asteroids, and 4% may be linked to near-Earth comets. This implies that a significant fraction of meter-sized impactors producing large bolides may have an asteroidal or cometary origin. In addition, we found at least three bolides having hyperbolic orbits with high tensile strength values. Meter-sized meteoroids of interstellar origin could be more common than previously thought, representing about 1% of the flux of large bolides. The inferred bulk physical properties suggest that the interstellar medium could bias these projectiles toward high strength rocks with the ability to survive prolonged exposure to the harsh interstellar space conditions.

Funder

EC ∣ European Research Council

Ministerio de Ciencia e Innovación

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3