Inferring Exoplanet Disequilibria with Multivariate Information in Atmospheric Reaction Networks

Author:

Fisher TheresaORCID,Kim HyunjuORCID,Millsaps Camerian,Line MichaelORCID,Walker Sara I.ORCID

Abstract

Abstract Inferring properties of exoplanets from their atmospheres presents technical challenges in data collection due to low resolution and low signal-to-noise ratio (S/N) and theoretical challenges in the predictions made from forward-modeling due to errors introduced via incomplete or inaccurate assumptions in atmospheric physics and chemistry. The combination of these factors makes developing techniques to identify the most predictive features robust to low S/N and model error an increasingly important challenge for exoplanet science. Here we implement a multivariate approach to identify optimal predictors of the state of disequilibria. As a case study we focus on the prediction of vertical mixing (parameterized as eddy diffusion) in hot Jupiter atmospheres. We use multivariate information contained in molecular abundances, reaction network topology, and Gibbs free energy to demonstrate the variation in prediction efficacy of the vertical mixing coefficient (K zz) from different model information. While current approaches target inferring molecular abundances from spectral data, our results indicate that the set of optimal predictors of K zz varies with planetary properties such as irradiation temperature and metallicity. In most cases, multivariate data composed of network topological variables, which capture system-level features, perform as well as the set of optimal predictors and better than any individual variable. We discuss future directions, where identifying the set of optimal predictors should be useful for quantitatively ranking atmospheres in terms of their distance from thermochemical equilibrium, provide target variables for the development of new tools for inverse modeling, and provide applications to the longer-term goal of detection of disequilibria associated with life.

Funder

NASA Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3