Prospects from TESS and Gaia to Constrain the Flatness of Planetary Systems

Author:

Espinoza-Retamal Juan I.ORCID,Zhu WeiORCID,Petrovich CristobalORCID

Abstract

Abstract The mutual inclination between planets orbiting the same star provides key information to understand the formation and evolution of multiplanet systems. In this work, we investigate the potential of Gaia astrometry in detecting and characterizing cold Jupiters in orbits exterior to the currently known Transiting Exoplanet Survey Satellite (TESS) planet candidates. According to our simulations, out of the ∼3350 systems expected to have cold Jupiter companions, Gaia, by its nominal 5 yr mission, should be able to detect ∼200 cold Jupiters and measure the orbital inclinations with a precision of σ cos i < 0.2 in ∼120 of them. These numbers are estimated under the assumption that the orbital orientations of the CJs follow an isotropic distribution, but these only vary slightly for less broad distributions. We also discuss the prospects from radial velocity follow-ups to better constrain the derived properties and provide a package to do quick forecasts using our Fisher matrix analysis. Overall, our simulations show that Gaia astrometry of cold Jupiters orbiting stars with TESS planets can distinguish dynamically cold (mean mutual inclination ≲5°) from dynamically hot systems (mean mutual inclination ≳20°), placing a new set of constraints on their formation and evolution.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Aligned Orbit of the Eccentric Proto Hot Jupiter TOI-3362b*;The Astrophysical Journal Letters;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3