Fast Globally Optimal Catalog Matching using MIQCP

Author:

Feitelberg JacobORCID,Basu AmitabhORCID,Budavári TamásORCID

Abstract

Abstract We propose a novel exact method to solve the probabilistic catalog matching problem faster than previously possible. Our new approach uses mixed integer programming and introduces quadratic constraints to shrink the problem by multiple orders of magnitude. We also provide a method to use a feasible solution to dramatically speed up our algorithm. This gain in performance is dependent on how close to optimal the feasible solution is. Also, we are able to provide good solutions by stopping our mixed integer programming solver early. Using simulated catalogs, we empirically show that our new mixed integer program with quadratic constraints is able to be set up and solved much faster than previous large linear formulations. We also demonstrate our new approach on real-world data from the Hubble Source Catalog. This paper is accompanied by publicly available software to demonstrate the proposed method.

Funder

DOD ∣ USAF ∣ AMC ∣ Air Force Office of Scientific Research

National Science Foundation

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3