A Model Estimator for Noisy Compact Emission Recovery in Radio Synthesis Imaging

Author:

Zhang L.ORCID,Zhang M.ORCID,Wang B.

Abstract

Abstract Reconstruction of a noisy compact emission must consider not only the point-spread function but also the effect of noise. However, the traditional threshold method in widely-used CLEAN-based algorithms finds it difficult to effectively prevent noise in the model image during noisy compact-emission reconstruction. This significantly limits the performance in noisy compact-emission reconstruction, such as deep field imaging. There are two major difficulties in the accurate reconstruction of a Stokes-I image of compact emission: first, the threshold method that has been used in practice is difficult to use to separate compact emission and noise; and second, over-subtraction makes it difficult for the reconstructed Stokes-I model image to remain positive. Therefore, a filter-based denoizing mechanism is introduced in the search phase of the model components to separate signal and noise so that the signal can be effectively extracted. The relatively larger loop gain for positive components means that the reconstructed model is in line with astrophysics. This will reduce the errors between the true sky image and the model image. The new model estimator is tested on a simulated JVLA observation with realistic source distributions from the VLA Low-Frequency Sky Survey project and the SKADS/SCubed simulation. The experiments show that it is very effective when used to separate signal and noise to lower the noise in the model image. This work explores the use of existing common software CASA to achieve high dynamic range imaging, which is an important step toward square kilometer array data processing.

Funder

The National Key R&D Program of China

The National Natural Science Foundation of China

The National SKA Program of China

The Guizhou Provincial Basic Research Program

The Cultivation project of Guizhou University

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3