Abstract
Abstract
We study the excitation of mutual inclination between planetary orbits by a novel secular-orbital resonance in multi-planet systems perturbed by binary companions, which we call “ivection.” The ivection resonance happens when the nodal precession rate of the planet matches a multiple of the orbital frequency of the binary, and its physical nature is similar to the previously studied evection resonance. Capture into an ivection resonance requires encountering the resonance with slowly increasing nodal precession rate, and it can excite the mutual inclination of the planets without affecting their eccentricities. We discuss the possible outcomes of ivection resonance capture, and we use simulations to illustrate that it is a promising mechanism for producing the mutual inclination in systems where planets have significant mutual inclination but modest eccentricity, such as Kepler-108. We also find an apparent deficit of multi-planet systems that would have a nodal precession period comparable to the binary orbital period, suggesting that ivection resonance may inhibit formation of or destablize multi-planet systems with an external binary companion.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics