Understanding the Planetary Formation and Evolution in Star Clusters (UPiC). I. Evidence of Hot Giant Exoplanets Formation Timescales

Author:

Dai Yuan-ZheORCID,Liu Hui-GenORCID,Yang Jia-YiORCID,Zhou Ji-LinORCID

Abstract

Abstract Planets in young star clusters could shed light on planet formation and evolution since star clusters can provide accurate age estimation. However, the number of transiting planets detected in clusters was only ∼30, too small for statistical analysis. Thanks to the unprecedented high-precision astrometric data provided by Gaia DR2 and Gaia DR3, many new open clusters (OCs) and comoving groups have been identified. The Understanding Planetary Formation and Evolution in Star Clusters project aims to find observational evidence and interpret how planets form and evolve in cluster environments. In this work, we cross match the stellar catalogs of new OCs and comoving groups with confirmed planets and candidates. We carefully remove false positives and obtain the biggest catalog of planets in star clusters up to now, which consists of 73 confirmed planets and 84 planet candidates. After age validation, we obtain the radius–age diagram of these planets/candidates. We find an increment in the fraction of hot Jupiters (HJs) around 100 Myr and attribute the increment to the flyby-induced high-e migration in star clusters. An additional small bump of the fraction of HJs after 1 Gyr is detected, which indicates the formation timescale of HJ around field stars is much larger than that in star clusters. Thus, stellar environments play important roles in the formation of HJs. The hot Neptune desert occurs around 100 Myr in our sample. A combination of photoevaporation and high-e migration may sculpt the hot Neptune desert in clusters.

Funder

The National Natural Science Foundation of China

The National Key R&D Program of China

The China Manned Space Project

Civil Aerospace Technology Research Project

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Planet Formation—Observational Constraints, Physical Processes, and Compositional Patterns;Reviews in Mineralogy and Geochemistry;2024-07-01

2. Progress on Exoplanet Detection and Research in Space;Chinese Journal of Space Science;2024

3. Progress on Exoplanet Detection and Research in Space;Chinese Journal of Space Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3