CD –27°11535: Evidence for a Triple System in the β Pictoris Moving Group

Author:

Thomas Andrew D.ORCID,Nielsen Eric L.ORCID,De Rosa Robert J.ORCID,Peck Anne E.ORCID,Macintosh BruceORCID,Chilcote JeffreyORCID,Kalas PaulORCID,Wang Jason J.ORCID,Blunt SarahORCID,Greenbaum AlexandraORCID,Konopacky Quinn M.ORCID,Ireland Michael J.ORCID,Tuthill PeterORCID,Ward-Duong KimberlyORCID,Hirsch Lea A.ORCID,Czekala IanORCID,Marchis FranckORCID,Marois ChristianORCID,Millar-Blanchaer Max A.ORCID,Roberson WilliamORCID,Smith AdamORCID,Gallamore HannahORCID,Klusmeyer JessicaORCID

Abstract

Abstract We present new spatially resolved astrometry and photometry of the CD –27°11535 system, a member of the β Pictoris moving group consisting of two resolved K-type stars on a ∼20 yr orbit. We fit an orbit to relative astrometry measured from NIRC2, GPI, and archival NaCo images, in addition to literature measurements. However, the total mass inferred from this orbit is significantly discrepant from that inferred from stellar evolutionary models using the luminosity of the two stars. We explore two hypotheses that could explain this discrepant mass sum: a discrepant parallax measurement from Gaia due to variability, and the presence of an additional unresolved companion to one of the two components. We find that the ∼20 yr orbit could not bias the parallax measurement, but that variability of the components could produce a large-amplitude astrometric motion, an effect that cannot be quantified exactly without the individual Gaia measurements. The discrepancy could also be explained by an additional star in the system. We jointly fit the astrometric and photometric measurements of the system to test different binary and triple architectures for the system. Depending on the set of evolutionary models used, we find an improved goodness of fit for a triple system architecture that includes a low-mass (M = 0.177 ± 0.055 M ) companion to the primary star. Further studies of this system will be required in order to resolve this discrepancy, either by refining the parallax measurement with a more complex treatment of variability-induced astrometric motion or by detecting a third companion.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3