The Anatomy of an Unusual Edge-on Protoplanetary Disk. I. Dust Settling in a Cold Disk

Author:

Wolff Schuyler G.ORCID,Duchêne GaspardORCID,Stapelfeldt Karl R.ORCID,Ménard FrancoisORCID,Flores ChristianORCID,Padgett DeborahORCID,Pinte ChristopheORCID,Villenave MarionORCID,van der Plas GerritORCID,Perrin Marshall D.ORCID

Abstract

Abstract As the earliest stage of planet formation, massive, optically thick, and gas-rich protoplanetary disks provide key insights into the physics of star and planet formation. When viewed edge-on, high-resolution images offer a unique opportunity to study both the radial and vertical structures of these disks and relate this to vertical settling, radial drift, grain growth, and changes in the midplane temperatures. In this work, we present multi-epoch Hubble Space Telescope and Keck scattered light images, and an Atacama Large Millimeter/submillimeter Array 1.3 mm continuum map for the remarkably flat edge-on protoplanetary disk SSTC2DJ163131.2–242627, a young solar-type star in ρ Ophiuchus. We model the 0.8 μm and 1.3 mm images in separate Markov Chain Monte Carlo (MCMC) runs to investigate the geometry and dust properties of the disk using the MCFOST radiative transfer code. In scattered light, we are sensitive to the smaller dust grains in the surface layers of the disk, while the submillimeter dust continuum observations probe larger grains closer to the disk midplane. An MCMC run combining both data sets using a covariance-based log-likelihood estimation was marginally successful, implying insufficient complexity in our disk model. The disk is well characterized by a flared disk model with an exponentially tapered outer edge viewed nearly edge-on, though some degree of dust settling is required to reproduce the vertically thin profile and lack of apparent flaring. A colder than expected disk midplane, evidence for dust settling, and residual radial substructures all point to a more complex radial density profile to be probed with future, higher-resolution observations.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3