Brought to Light. III. Colors of Disk and Clump Substructures in Dwarf Early-type Galaxies of the Fornax Cluster

Author:

Michea JosefinaORCID,Pasquali AnnaORCID,Smith RoryORCID,Calderón-Castillo PaulaORCID,Grebel Eva K.ORCID,Peletier Reynier F.ORCID

Abstract

Abstract It has been well established that dwarf early-type galaxies (ETGs) can often exhibit a complex morphology, whereby faint spiral arms, bars, edge-on disks, or clumps are embedded in their main, brighter diffuse body. In our first paper (“Brought to Light I”), we developed a new method for robustly identifying and extracting substructures in deep imaging data of dwarf ETGs in the Virgo galaxy cluster. Here we apply our method to a sample of 23 dwarf ETGs in the Fornax galaxy cluster, out of which 9 have disk-like and 14 have clump-like substructures. According to Fornax Deep Survey (FDS) data, our sample constitutes 12% of all dwarf ETGs in Fornax brighter than M r = − 13 mag, and contains all cases that unequivocally exhibit substructure features. We use g- and r-band FDS images to measure the relative contribution of the substructures to the total galaxy light and to estimate their gr colors. We find that the substructures typically contribute 8.7% and 5.3% of the total galaxy light in the g and r bands, respectively, within two effective radii. Disk substructures are usually found in dwarf ETGs with redder global colors, and they can be either as red as or bluer than their galaxy’s diffuse component. In contrast, the clump substructures are found in comparatively bluer dwarf ETGs, and they are always bluer than their galaxy’s diffuse component. These results provide further evidence that dwarf ETGs can hide diverse complex substructures, with stellar populations that can greatly differ from those of the dominant diffuse light in which they are embedded.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3