Wavelet Transforms of Microlensing Data: Denoising, Extracting Intrinsic Pulsations, and Planetary Signals

Author:

Sajadian SedigheORCID,Fatheddin HosseinORCID

Abstract

Abstract Wavelets are waveform functions that describe transient and unstable variations, such as noise. In this work, we study the advantages of discrete and continuous wavelet transforms (DWTs and CWTs) of microlensing data to denoise them and extract their planetary signals and intrinsic pulsations hidden by noise. We first generate synthetic microlensing data and apply wavelet denoising to them. For these simulated microlensing data with ideally Gaussian noise based on the Optical Gravitational Lensing Experiment (OGLE) photometric accuracy, denoising with DWTs reduces standard deviations of data from real models by 0.044–0.048 mag. The efficiency to regenerate real models and planetary signals with denoised data strongly depends on the observing cadence and decreases from 37% to 0.01% with increasing cadence from 15 min to 6 hr. We then apply denoising on 100 microlensing events discovered by the OGLE group. On average, wavelet denoising for these data improves standard deviations and χ n 2 of data with respect to the best-fit models by 0.023 mag and 1.16, respectively. The best-performing wavelets (based on the highest signal-to-noise ratio’s peak ( S / N max ), the highest Pearson’s correlation, or the lowest root mean squared error for denoised data) are from the Symlet and Biorthogonal wavelet families in simulated and OGLE data, respectively. In some denoised data, intrinsic stellar pulsations or small planetary like deviations appear that were covered with noise in raw data. However, through DWT denoising rather flattened and wide planetary signals could be reconstructed rather than sharp signals. CWTs and 3D frequency–power–time maps could inform about the existence of sharp signals.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Singular Spectrum Analysis of Exoplanetary Transits;The Astronomical Journal;2024-07-15

2. HOG-PCA-Block-Voting: Lighter and Smaller but Faster;2024 2nd International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII);2024-06-12

3. Analysis and Modeling of Geodetic Data Based on Machine Learning;Applied Mathematics and Nonlinear Sciences;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3