Evolution of the Exoplanet Size Distribution: Forming Large Super-Earths Over Billions of Years

Author:

David Trevor J.ORCID,Contardo GabriellaORCID,Sandoval AngeliORCID,Angus RuthORCID,Lu Yuxi (Lucy)ORCID,Bedell MeganORCID,Curtis Jason L.ORCID,Foreman-Mackey DanielORCID,Fulton Benjamin J.ORCID,Grunblatt Samuel K.ORCID,Petigura Erik A.ORCID

Abstract

Abstract The radius valley, a bifurcation in the size distribution of small, close-in exoplanets, is hypothesized to be a signature of planetary atmospheric loss. Such an evolutionary phenomenon should depend on the age of the star–planet system. In this work, we study the temporal evolution of the radius valley using two independent determinations of host star ages among the California–Kepler Survey (CKS) sample. We find evidence for a wide and nearly empty void of planets in the period–radius diagram at the youngest system ages (≲2–3 Gyr) represented in the CKS sample. We show that the orbital period dependence of the radius valley among the younger CKS planets is consistent with that found among those planets with asteroseismically determined host star radii. Relative to previous studies of preferentially older planets, the radius valley determined among the younger planetary sample is shifted to smaller radii. This result is compatible with an atmospheric loss timescale on the order of gigayears for progenitors of the largest observed super-Earths. In support of this interpretation, we show that the planet sizes that appear to be unrepresented at ages ≲2–3 Gyr are likely to correspond to planets with rocky compositions. Our results suggest that the size distribution of close-in exoplanets and the precise location of the radius valley evolve over gigayears.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3