A Unified Treatment of Kepler Occurrence to Trace Planet Evolution. II. The Radius Cliff Formed by Atmospheric Escape

Author:

Dattilo AnneORCID,Batalha Natalie M.ORCID

Abstract

Abstract The Kepler mission enabled us to look at the intrinsic population of exoplanets within our galaxy. In period-radius space, the distribution of the intrinsic population of planets contains structure that can trace planet formation and evolution history. The most distinctive feature in period-radius space is the radius cliff, a steep drop-off in occurrence between 2.5 and 4R across all period ranges, separating the sub-Neptune population from the rarer Neptunes orbiting within 1 au. Following our earlier work to measure the occurrence rate of the Kepler population, we characterize the shape of the radius cliff as a function of orbital period (10–300 days) as well as insolation flux (9500S –10S ). The shape of the cliff flattens at longer orbital periods, tracking the rising population of Neptune-sized planets. In insolation, however, the radius cliff is both less dramatic and the slope is more uniform. The difference in this feature between period space and insolation space can be linked to the effect of EUV/X-ray versus bolometric flux in the planet’s evolution. Models of atmospheric mass loss processes that predict the location and shape of the radius valley also predict the radius cliff. We compare our measured occurrence rate distribution to population synthesis models of photoevaporation and core-powered mass loss in order to constrain formation and evolution pathways. We find that the models do not statistically agree with our occurrence distributions of the radius cliff in period space or insolation space. Atmospheric mass loss that shapes the radius valley cannot fully explain the shape of the radius cliff.

Funder

Heising-Simons Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3