Modeling Turbulence in Galactic Centers

Author:

Salas Jesus M.,Morris Mark R.ORCID,Naoz SmadarORCID

Abstract

Abstract Turbulence is a prevalent phenomenon in the interstellar medium, and in particular, the environment at the centers of galaxies. For example, detailed observations of the Milky Way’s Central Molecular Zone (CMZ) revealed that it has a complex and turbulent structure. Turbulence on galactic scales is often modeled using star formation and feedback. However, these effects do not appear to be sufficient for explaining the high-velocity dispersion observed in the CMZ, indicating that additional gas-stirring processes are likely to be operating. Here we introduce a proof-of-concept method to drive turbulence in gas that orbits under the influence of a galactic potential. Instead of relying on a particular physical mechanism, we have adopted a Fourier forcing module and have applied it using a smoothed particle hydrodynamics code. To test our method, we performed simulations of a simplistic model of the CMZ. Our turbulence injection method is capable of balancing the self-gravity of the gas, which allows us to run the simulations for long timescales and thereby follow the evolution of the CMZ. Our results show that turbulence induces a flocculent spiral pattern in our model, analogous to that found in galactic-scale simulations. Furthermore, we find that our turbulence injection method induces inward migration of gas, a result consistent with previous numerical simulations. We submit that this injection method is a promising new tool to simulate turbulence in galactic centers.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3