The Demographics of Terrestrial Planets in the Venus Zone

Author:

Ostberg ColbyORCID,Kane Stephen R.ORCID,Li ZhexingORCID,Schwieterman Edward W.ORCID,Hill Michelle L.ORCID,Bott KimberlyORCID,Dalba Paul A.ORCID,Fetherolf TaraORCID,Head James W.ORCID,Unterborn Cayman T.ORCID

Abstract

Abstract Understanding the physical characteristics of Venus, including its atmosphere, interior, and its evolutionary pathway with respect to Earth, remains a vital component for terrestrial planet evolution models and the emergence and/or decline of planetary habitability. A statistical strategy for evaluating the evolutionary pathways of terrestrial planets lies in the atmospheric characterization of exoplanets, where the sample size provides sufficient means for determining required runaway greenhouse conditions. Observations of potential exo-Venuses can help confirm hypotheses about Venus’s past, as well as the occurrence rate of Venus-like planets in other systems. Additionally, the data from future Venus missions, such as DAVINCI, EnVision, and VERITAS, will provide valuable information regarding Venus, and the study of exo-Venuses will be complimentary to these missions. To facilitate studies of exo-Venus candidates, we provide a catalog of all confirmed terrestrial planets in the Venus zone, including transiting and nontransiting cases, and quantify their potential for follow-up observations. We examine the demographics of the exo-Venus population with relation to stellar and planetary properties, such as the planetary radius gap. We highlight specific high-priority exo-Venus targets for follow-up observations, including TOI-2285 b, LTT 1445 A c, TOI-1266 c, LHS 1140 c, and L98–59 d. We also discuss follow-up observations that may yield further insight into the Venus/Earth divergence in atmospheric properties.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3