Short-period Variables in TESS Full-frame Image Light Curves Identified via Convolutional Neural Networks

Author:

Olmschenk GregORCID,Barry Richard K.ORCID,Ishitani Silva StelaORCID,Schnittman Jeremy D.ORCID,Cieplak Agnieszka M.ORCID,Powell Brian P.ORCID,Kruse EthanORCID,Barclay ThomasORCID,Solanki Siddhant,Ortega Bianca,Baker John,Yesenia Helem Salinas Mamani

Abstract

Abstract The Transiting Exoplanet Survey Satellite (TESS) mission measured light from stars in ∼85% of the sky throughout its 2 yr primary mission, resulting in millions of TESS 30-minute-cadence light curves to analyze in the search for transiting exoplanets. To search this vast data set, we aim to provide an approach that is computationally efficient, produces accurate predictions, and minimizes the required human search effort. We present a convolutional neural network that we train to identify short-period variables. To make a prediction for a given light curve, our network requires no prior target parameters identified using other methods. Our network performs inference on a TESS 30-minute-cadence light curve in ∼5 ms on a single GPU, enabling large-scale archival searches. We present a collection of 14,156 short-period variables identified by our network. The majority of our identified variables fall into two prominent populations, one of close-orbit main-sequence binaries and another of δ Scuti stars. Our neural network model and related code are additionally provided as open-source code for public use and extension.

Funder

NASA ∣ GSFC ∣ Astrophysics Science Division

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3