Octofitter: Fast, Flexible, and Accurate Orbit Modeling to Detect Exoplanets

Author:

Thompson WilliamORCID,Lawrence JensenORCID,Blakely DoriORCID,Marois ChristianORCID,Wang JasonORCID,Giordano MoséORCID,Brandt TimothyORCID,Johnstone DougORCID,Ruffio Jean-BaptisteORCID,Ammons S. MarkORCID,Crotts Katie A.ORCID,Do Ó Clarissa R.ORCID,Gonzales Eileen C.ORCID,Rice MalenaORCID

Abstract

Abstract As next-generation imaging instruments and interferometers search for planets closer to their stars, they must contend with increasing orbital motion and longer integration times. These compounding effects make it difficult to detect faint planets but also present an opportunity. Increased orbital motion makes it possible to move the search for planets into the orbital domain, where direct images can be freely combined with the radial velocity and proper motion anomaly, even without a confirmed detection in any single epoch. In this paper, we present a fast and differentiable multimethod orbit-modeling and planet detection code called Octofitter. This code is designed to be highly modular and allows users to easily adjust priors, change parameterizations, and specify arbitrary function relations between the parameters of one or more planets. Octofitter further supplies tools for examining model outputs including prior and posterior predictive checks and simulation-based calibration. We demonstrate the capabilities of Octofitter on real and simulated data from different instruments and methods, including HD 91312, simulated JWST/NIRISS aperture masking interferometry observations, radial velocity curves, and grids of images from the Gemini Planet Imager. We show that Octofitter can reliably recover faint planets in long sequences of images with arbitrary orbital motion. This publicly available tool will enable the broad application of multiepoch and multimethod exoplanet detection, which could improve how future targeted ground- and space-based surveys are performed. Finally, its rapid convergence makes it a useful addition to the existing ecosystem of tools for modeling the orbits of directly imaged planets.

Funder

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3