The K2 and TESS Synergy. II. Revisiting 26 Systems in the TESS Primary Mission

Author:

Thygesen EricaORCID,Ranshaw Jessica A.ORCID,Rodriguez Joseph E.ORCID,Vanderburg AndrewORCID,Quinn Samuel N.ORCID,Eastman Jason D.ORCID,Bieryla AllysonORCID,Latham David W.ORCID,Vanderspek Roland K.ORCID,Jenkins Jon M.ORCID,Caldwell Douglas A.ORCID,Ikwut-Ukwa MmaORCID,Colón Knicole D.ORCID,Dotson JessieORCID,Hedges ChristinaORCID,Collins Karen A.ORCID,Calkins Michael L.ORCID,Berlind Perry,Esquerdo Gilbert A.ORCID

Abstract

Abstract The legacy of NASA’s K2 mission has provided hundreds of transiting exoplanets that can be revisited by new and future facilities for further characterization, with a particular focus on studying the atmospheres of these systems. However, the majority of K2-discovered exoplanets have typical uncertainties on future times of transit within the next decade of greater than 4 hr, making observations less practical for many upcoming facilities. Fortunately, NASA’s Transiting Exoplanet Survey Satellite (TESS) mission is reobserving most of the sky, providing the opportunity to update the ephemerides for ∼300 K2 systems. In the second paper of this series, we reanalyze 26 single-planet, K2-discovered systems that were observed in the TESS primary mission by globally fitting their K2 and TESS light curves (including extended mission data where available), along with any archival radial velocity measurements. As a result of the faintness of the K2 sample, 13 systems studied here do not have transits detectable by TESS. In those cases, we refit the K2 light curve and provide updated system parameters. For the 23 systems with M * ≳ 0.6 M , we determine the host star parameters using a combination of Gaia parallaxes, spectral energy distribution fits, and MESA Isochrones and Stellar Tracks stellar evolution models. Given the expectation of future TESS extended missions, efforts like the K2 and TESS Synergy project will ensure the accessibility of transiting planets for future characterization while leading to a self-consistent catalog of stellar and planetary parameters for future population efforts.

Funder

NASA: TESS GI

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3