Archetype-based Redshift Estimation for the Dark Energy Spectroscopic Instrument Survey

Author:

Anand AbhijeetORCID,Guy JulienORCID,Bailey StephenORCID,Moustakas JohnORCID,Aguilar J.,Ahlen S.ORCID,Bolton A. S.ORCID,Brodzeller A.ORCID,Brooks D.,Claybaugh T.,Cole S.ORCID,de la Macorra A.ORCID,Dey BiprateepORCID,Fanning K.ORCID,Forero-Romero J. E.ORCID,Gaztañaga E.,Gontcho A Gontcho S.ORCID,Gutierrez G.,Honscheid K.,Howlett C.ORCID,Juneau S.,Kirkby D.ORCID,Kisner T.ORCID,Kremin A.ORCID,Lambert A.,Landriau M.ORCID,Le Guillou L.ORCID,Manera M.ORCID,Meisner A.ORCID,Miquel R.,Mueller E.,Niz G.ORCID,Palanque-Delabrouille N.ORCID,Percival W. J.ORCID,Poppett C.,Prada F.ORCID,Raichoor A.ORCID,Rezaie M.ORCID,Rossi G.,Sanchez E.ORCID,Schlafly E. F.ORCID,Schlegel D.,Schubnell M.,Sprayberry D.,Tarlé G.ORCID,Warner C.,Weaver B. A.,Zhou R.ORCID,Zou H.ORCID

Abstract

Abstract We present a computationally efficient galaxy archetype-based redshift estimation and spectral classification method for the Dark Energy Survey Instrument (DESI) survey. The DESI survey currently relies on a redshift fitter and spectral classifier using a linear combination of principal component analysis–derived templates, which is very efficient in processing large volumes of DESI spectra within a short time frame. However, this method occasionally yields unphysical model fits for galaxies and fails to adequately absorb calibration errors that may still be occasionally visible in the reduced spectra. Our proposed approach improves upon this existing method by refitting the spectra with carefully generated physical galaxy archetypes combined with additional terms designed to absorb data reduction defects and provide more physical models to the DESI spectra. We test our method on an extensive data set derived from the survey validation (SV) and Year 1 (Y1) data of DESI. Our findings indicate that the new method delivers marginally better redshift success for SV tiles while reducing catastrophic redshift failure by 10%–30%. At the same time, results from millions of targets from the main survey show that our model has relatively higher redshift success and purity rates (0.5%–0.8% higher) for galaxy targets while having similar success for QSOs. These improvements also demonstrate that the main DESI redshift pipeline is generally robust. Additionally, it reduces the false-positive redshift estimation by 5%−40% for sky fibers. We also discuss the generic nature of our method and how it can be extended to other large spectroscopic surveys, along with possible future improvements.

Funder

DOE ∣ Office of Science

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3