Analysis of Previously Classified White Dwarf–Main-sequence Binaries Using Data from the APOGEE Survey

Author:

Corcoran Kyle A.ORCID,Lewis Hannah M.ORCID,Anguiano BorjaORCID,Majewski Steven R.ORCID,Kounkel MarinaORCID,McDonald Devin JORCID,Stassun Keivan G.ORCID,Cunha KatiaORCID,Smith Verne,Prieto Carlos AllendeORCID,Badenes CarlesORCID,De Lee NathanORCID,Mazzola Christine N.,Longa-Peña Penélope,Roman-Lopes AlexandreORCID

Abstract

Abstract We present analyses of near-infrared spectroscopic data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey for 45 previously confirmed or candidate white dwarf–main-sequence (WDMS) binaries identified by the optical Sloan Digital Sky Survey (SDSS) and LAMOST surveys. Among these 45 systems, we classify three as having red giant primaries in the LAMOST sample and 14 as young stellar object contaminants in the photometrically identified SDSS sample. From among the subsample of 28 systems that we confirm to have MS primaries, we derive and place limits on orbital periods and velocity amplitudes for 14. Seven systems have significant velocity variations that warrant a post-common-envelope (PCE) binary classification, four of which are newly classified, three of which are newly confirmed, and five for which we can derive full orbital parameters. If confirmed, one of these newly discovered systems (2M14544500+4626456) will have the second-longest orbital period reported for a typical compact PCE WDMS binary (P = 15.1 days). In addition to the seven above, we also recover and characterize with APOGEE data the well-known PCE WDMS systems EG UMa and HZ 9. We also investigate the overall metallicity distribution of the WDMS sample, which is a parameter space not often explored for these systems. Of note, we find one system (2M14244053+4929580) to be extremely metal-poor ([Fe/H] = − 1.42) relative to the rest of the near-solar sample. Additionally, the PCE systems in our sample are found to be, on average, higher in metallicity than their wide-binary counterparts, though we caution that with this small number of systems, the sample may not be representative of the overall distribution of WDMS systems.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. White Dwarf Binaries across the H-R Diagram;The Astronomical Journal;2022-09-06

2. A Catalog of Potential Post–Common Envelope Binaries;The Astrophysical Journal;2021-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3