Velocity Dispersion of the Open Cluster NGC 2571 by Radial Velocities and Proper Motions

Author:

Kulesh Maxim V.ORCID,Samirkhanova Aleksandra E.,Carraro GiovanniORCID,Sales-Silva Joao V.ORCID,Capuzzo Dolcetta Roberto,Seleznev Anton F.ORCID

Abstract

Abstract We use a kernel density estimator method to evaluate the stellar velocity dispersion in the open cluster NGC 2571. We derive the 3D velocity dispersion using both proper motions as extracted from Gaia Data Release 3 and single-epoch radial velocities as obtained with the instrument FLAMES at ESO's Very Large Telescope. The mean-square velocity along the line of sight is found to be larger than the one in the tangential direction by a factor of 6–8. We argue that the most likely explanation for such an occurrence is the presence of a significant quantity of unresolved binary and multiple stars in the radial velocity sample. Special attention should be paid to single-line spectroscopic binaries (SB1) since in this case we observe the spectral lines of the primary component only, and therefore the derived radial velocity is not the velocity of the binary system center of mass. To investigate this scenario, we performed numerical experiments varying the fractional abundance of SB1 in the observed sample. These experiments show that the increase of the mean-square radial velocity depends on the fractional abundance of SB1 to a power in the range [0.39, 0.45]. We used the 3D velocity dispersion obtained by the dispersions in the tangential directions and the assumption that the radial velocity dispersion is the same as a tangential one to estimate the virial cluster mass and the cluster mass, taking into account the gravitational field of the Galaxy and the nonstationarity of the cluster. These estimates are 650 ± 30 M and 310 ± 80 M , respectively, in substantial agreement with the photometric cluster mass.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3