KIC 5768203: A δ Sct Pulsator Modulated by Rotation and Spots

Author:

Ma ShuguoORCID,Ali EsamdinORCID,Lv ChenglongORCID,Wei PengORCID,Yang TaoZhiORCID,Niu HubiaoORCID,Nie JundanORCID,Liu JunhuiORCID,Zong PengORCID,Feng GuojieORCID,Zhang Mengfan

Abstract

Abstract We perform a detailed analysis of the Kepler target KIC 5768203 based on the Kepler and Transiting Exoplanet Survey Satellite (TESS) data. Three independent frequencies are detected by Fourier analysis of the Kepler long-cadence data: two pulsation frequencies f P0 = 7.807874(2) day−1 and f P1 = 9.970035(6) day−1, which have amplitudes below 1.4 mmag in the Kepler band, and one modulation frequency f rot = 0.45813(1) day−1. Based on a period ratio of 0.7803, f P0 and f P1 are supposed to be radial frequencies. However, further confirmation is needed. Based on the triplets and phase variations of the two pulsation frequencies, the star is possibly a δ Sct pulsator in a binary system. The modulation frequency f rot and its four harmonics could be attributed to the stellar rotation and surface spots. With the rotation frequency f rot, the rotation velocity of the star is estimated to be 75(3) km s−1. By analyzing the phase diagram without pulsations, it is inferred that there are starspots (or clusters of starspots) of large area on the surface of KIC 5768203. These starspots are slowly evolving in position and brightness over the course of the Kepler long-cadence observations. The finding of the rotation frequency in the TESS data implies the long-term presence of starspots on the surface of KIC 5768203.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Natural Science Foundation of Xinjiang

the Chinese Academy of Sciences (CAS) Light of West China Program

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3