Magnetic Effects and 3D Structure in Theoretical High-resolution Transmission Spectra of Ultrahot Jupiters: the Case of WASP-76b

Author:

Beltz HayleyORCID,Rauscher EmilyORCID,Kempton Eliza M.-R.ORCID,Malsky IsaacORCID,Savel Arjun B.ORCID

Abstract

Abstract High-resolution spectroscopy has allowed for unprecedented levels of atmospheric characterization, especially for the hottest gas-giant exoplanets known as ultrahot Jupiters (UHJs). High-resolution spectra are sensitive to 3D effects, making complex 3D atmospheric models important for interpreting data. Moreover, these planets are expected to host magnetic fields that will shape their resulting atmospheric circulation patterns, but little modeling work has been done to investigate these effects. In this paper, we generate high-resolution transmission spectra from General Circulation Models for the canonical UHJ WASP-76b with three different magnetic treatments in order to understand the influence of magnetic forces on the circulation. In general, spectra from all models have increasingly blueshifted net Doppler shifts as transit progresses, but we find that the differing temperature and wind fields in the upper atmospheres of these models result in measurable differences. We find that magnetic effects may be contributing to the unusual trends previously seen in transmission for this planet. Our B = 3 Gauss active drag model in particular shows unique trends not found in the models with simpler or no magnetic effects. The net Doppler shifts are additionally influenced by the dominant opacity sources in each wavelength range considered, as each species probes different regions of the atmosphere and are sensitive to spatial differences in the circulation. This work highlights the ongoing need for models of planets in this temperature regime to consider both 3D and magnetic effects when interpreting high-resolution transmission spectra.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3