Abstract
Abstract
The initial metallicity of Type Ia Supernovae (SNe Ia) progenitor that is increasing with the cosmological chemical evolution will directly lead to a decrease of the 56Ni formed during the nucleosynthesis and then a varying standard candle. The variation may seriously affect our understanding of the evolving universe. In this work, we derived the relationships between 56Ni yield and metallicity in different progenitor channels. The evolution of the cosmic mean metallicity (CMM) was used to estimate the initial metallicity of progenitors. The effect of the delay times from the birth of progenitors to their explosion was also considered. The corrections of SNe Ia luminosity were estimated and the influences of the different progenitor channels and CMM evolution rates were examined. Several important cosmological parameters were updated according to the luminosity corrections.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献