Exoplanet Aeronomy: A Case Study of WASP-69 b’s Variable Thermosphere

Author:

Levine W. GarrettORCID,Vissapragada ShreyasORCID,Feinstein Adina D.ORCID,King George W.ORCID,Hernandez AleckORCID,Corrales LíaORCID,Greklek-McKeon MichaelORCID,Knutson Heather A.ORCID

Abstract

Abstract Aeronomy, the study of Earth’s upper atmosphere and its interaction with the local space environment, has long traced changes in the thermospheres of Earth and other solar system planets to solar variability in the X-ray and extreme-ultraviolet (collectively, XUV) bands. Extending comparative aeronomy to the short-period extrasolar planets may illuminate whether stellar XUV irradiation powers atmospheric outflows that change planetary radii on astronomical timescales. In recent years, near-IR transit spectroscopy of metastable Hei has been a prolific tracer of high-altitude planetary gas. We present a case study of exoplanet aeronomy using metastable Hei transit observations from Palomar Observatory's Wide Field InfraRed Camera and follow-up high-energy data from the Neil Gehrels Swift Observatory that were taken within 1 month of the WASP-69 system, a K-type main-sequence star with a well-studied hot Jupiter companion. Supplemented by archival data, we find that WASP-69's X-ray flux in 2023 was less than 50% of what was recorded in 2016 and that the metastable Hei absorption from WASP-69 b was lower in 2023 versus past epochs from 2017 to 2019. Via atmospheric modeling, we show that this time-variable metastable Hei signal is in the expected direction given the observed change in stellar XUV, possibly stemming from WASP-69's magnetic activity cycle. Our results underscore the ability of multiepoch, multiwavelength observations to paint a cohesive picture of the interaction between an exoplanet’s atmosphere and its host star.

Funder

U.S. Department of Defense

NASA Hubble Fellowship

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3