Morphological-based Analyses for Parameterizing Symmetry in Radio Galaxies

Author:

Javaherian MohsenORCID,Miraghaei HalimeORCID,Moradpour HoomanORCID

Abstract

Abstract The morphology of radio galaxies can provide significant clues to describe the formation and evolution of galaxies in the Universe. Here, we aim to extract the morphological parameters of radio galaxies and define symmetry criteria as some of the essential factors of their shape explanations. We employed 67 radio galaxies, which include Fanaroff–Riley type 1 and type 2 galaxies, and their radio images from the FIRST and LoTSS surveys. We developed an automatic segmentation process to extract morphological properties such as the size of objects, eccentricity, and orientation of segmented regions from data sets. Using a maximum likelihood estimator, we show that the distributions of sizes follow a power-law function with exponents of −0.39 ± 0.06 and −0.55 ± 0.05 for the FIRST and LoTSS data, respectively. We found that type 2 radio galaxies have slightly lower eccentricities than type 1. We studied the relationships between size, eccentricity, and redshift in scatter plots. The size of galaxies (kpc2) demonstrates gently growing trends with increasing eccentricity in their scatter plots. We discussed the possible effect of the redshifts of the galaxies on this result. Depending on the number of segmented regions, we defined symmetry criteria based on proximity to the center of a galaxy in the optical band, eccentricity, orientation, and the quarter (q) of appearance in the image. We found that the mean symmetry obtained for two segmented regions that mainly emerged in two quarters via the condition of q q = 2 has a higher value than those obtained for other cases.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3