On the Application of Bayesian Leave-one-out Cross-validation to Exoplanet Atmospheric Analysis

Author:

Welbanks LuisORCID,McGill PeterORCID,Line MichaelORCID,Madhusudhan NikkuORCID

Abstract

Abstract Over the last decade exoplanetary transmission spectra have yielded an unprecedented understanding about the physical and chemical nature of planets outside our solar system. Physical and chemical knowledge is mainly extracted via fitting competing models to spectroscopic data, based on some goodness-of-fit metric. However, current employed metrics shed little light on how exactly a given model is failing at the individual data point level and where it could be improved. As the quality of our data and complexity of our models increases, there is a need to better understand which observations are driving our model interpretations. Here we present the application of Bayesian leave-one-out cross-validation to assess the performance of exoplanet atmospheric models and compute the expected log pointwise predictive density (elpdLOO). elpdLOO estimates the out-of-sample predictive accuracy of an atmospheric model at data-point resolution, providing interpretable model criticism. We introduce and demonstrate this method on synthetic Hubble Space Telescope transmission spectra of a hot Jupiter. We apply elpdLOO to interpret current observations of HAT-P-41 b and assess the reliability of recent inferences of H in its atmosphere. We find that previous detections of H are dependent solely on a single data point. This new metric for exoplanetary retrievals complements and expands our repertoire of tools to better understand the limits of our models and data. elpdLOO provides the means to interrogate models at the single-data-point level, which will help in robustly interpreting the imminent wealth of spectroscopic information coming from JWST.

Funder

NASA HUBBLE FELLOWSHIP

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3