Dispersion Characteristics of the Multi-mode Fiber-fed VIPA Spectrograph

Author:

Zhu XiaomingORCID,Lin Dong,Zhang Zhongnan,Xie Xintong,He JinpingORCID

Abstract

Abstract A high-resolution ( > 10 5 ), multi-mode fiber-fed spectrograph on large telescopes with a reasonable size is desirable in astronomy. In this work, the dispersion characteristics of a multi-mode fiber-fed Virtually Imaged Phased Array (VIPA) spectrograph are studied theoretically and experimentally. A VIPA spectrograph, fed by multi-mode optical fibers with the operating wavelength at 750 ∼ 770 nm, is designed and built in our laboratory. After calibration with a homemade Yb:fiber ring laser frequency comb (with a repetition frequency of 808 MHz), the measured spectral resolution fed by multi-mode fibers with core diameters = 10 , 25, 50, and 105 μm is comparable with that of the single-mode fiber, i.e., = 7.62 × 10 5 8.97 × 10 5 , with equivalent transmission efficiencies. This verifies experimentally that the spectral resolution is much less affected by the core diameters of the input fibers when compared with that of échelle spectrographs. It is also found that the diffraction envelope of the VIPA spectrograph relies on the coherence of light sources and the width of the point-spread function is inversely proportional to the spatial position on the detector. Since the VIPA spectrograph has no imaging process in the main dispersion direction, the spectral resolution is insensitive to the width of the input slit or the fiber diameter. This makes the VIPA spectrograph a promising instrument to attain an ultra-high spectral resolution ( > 3 × 10 5 ) on very large telescopes.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3