Structural and Dynamical Analysis of the Quiescent Molecular Ridge in the Large Magellanic Cloud

Author:

Finn Molly K.ORCID,Indebetouw RemyORCID,Johnson Kelsey E.ORCID,Costa Allison H.ORCID,Chen C.-H. RosieORCID,Kawamura AkikoORCID,Onishi ToshikazuORCID,Ott JürgenORCID,Sewiło MartaORCID,Tokuda KazukiORCID,Wong TonyORCID,Zahorecz SaroltaORCID

Abstract

Abstract We present a comparison of low-J 13CO and CS observations of four different regions in the LMC—the quiescent Molecular Ridge, 30 Doradus, N159, and N113, all at a resolution of ∼3 pc. The regions 30 Dor, N159, and N113 are actively forming massive stars, while the Molecular Ridge is forming almost no massive stars, despite its large reservoir of molecular gas and proximity to N159 and 30 Dor. We segment the emission from each region into hierarchical structures using dendrograms and analyze the sizes, masses, and line widths of these structures. We find that the Ridge has significantly lower kinetic energy at a given size scale and also lower surface densities than the other regions, resulting in higher virial parameters. This suggests that the Ridge is not forming massive stars as actively as the other regions because it has less dense gas and not because collapse is suppressed by excess kinetic energy. We also find that these physical conditions and energy balance vary significantly within the Ridge and that this variation appears only weakly correlated with distance from sites of massive-star formation such as R136 in 30 Dor, which is ∼1 kpc away. These variations also show only a weak correlation with local star formation activity within the clouds.

Funder

National Science Foundation

National Aeronautics and Space Administration

National Astronomical Observatory of Japan

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3