HD 183986: A High-contrast SB2 System with a Pulsating Component

Author:

Vaňko MartinORCID,Pribulla TheodorORCID,Gajdoš PavolORCID,Budaj JánORCID,Zverko Juraj,Paunzen ErnstORCID,Garai ZoltánORCID,Hambálek LubomírORCID,Komžík RichardORCID,Kundra EmilORCID

Abstract

Abstract There is a small group of peculiar early-type stars on the main sequence that show different rotation velocities from different spectral lines. This inconsistency might be due to the binary nature of these objects. We aim to verify this hypothesis by a more detailed spectroscopic and photometric investigation of one such object: HD 183986. We obtained 151 high- and medium-resolution spectra that covered an anticipated long orbital period. There is clear evidence of the orbital motion of the primary component. We uncovered a very faint and broad spectrum of the secondary component. The corresponding SB2 orbital parameters, and the component spectra, were obtained by Fourier disentangling using the KOREL code. The component spectra were further modeled by iSpec code to arrive at the atmospheric quantities and the projected rotational velocities. We have proven that this object is a binary star with a period P = 1268.2(11) days, eccentricity e = 0.5728(20), and mass ratio q = 0.655. The primary component is a slowly rotating star ( v sin i = 27 km s−1) while the cooler and less massive secondary rotates much faster ( v sin i 120 km s−1). Photometric observations obtained by the Transiting Exoplanet Survey Satellite (TESS) satellite were also investigated to shed more light on this object. A multiperiod photometric variability was detected in the TESS data ranging from hours (the δ Sct-type variability) to a few days (spots/rotational variability). The physical parameters of the components and the origin of the photometric variability are discussed in more detail.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FM CMa: hot and massive eclipsing binary with a pulsating component;Contributions of the Astronomical Observatory Skalnaté Pleso;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3