The Orbital Geometries and Stellar Obliquities of Exoplanet-hosting Multistar Systems

Author:

Rice MalenaORCID,Gerbig KonstantinORCID,Vanderburg AndrewORCID

Abstract

Abstract The current orbital geometries of exoplanet systems offer a fossilized record of the systems’ dynamical histories. A particularly rich set of dynamical mechanisms is available to exoplanets residing in multistar systems, which may have their evolution shaped by the gravitational influence of bound stellar companions. In this work, we examine the joint distribution of stellar obliquities and orbital orientations for transiting exoplanets residing within astrometrically resolved binary and triple-star systems. We leverage existing constraints on stellar obliquities in exoplanet systems, together with astrometric measurements from Gaia DR3, to uncover a set of fully aligned, “orderly” exoplanet systems that exhibit evidence of both spin–orbit and orbit–orbit alignment. We also find evidence that the observed distribution of orbit–orbit orientations in our sample is more strongly peaked toward alignment than an isotropic distribution. Our results may be indicative of efficient viscous dissipation by nodally recessing protoplanetary disks, demonstrating a regime in which stellar companions produce and maintain order in planetary systems, rather than enhancing misalignments.

Funder

Heising-Simons Foundation

Publisher

American Astronomical Society

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3