Abstract
Abstract
The 1RXS J034231.8+121622 system consists of an M dwarf primary and a directly imaged low-mass stellar companion. We use high-resolution spectroscopic data from Keck/KPIC to estimate the objects' atmospheric parameters and radial velocities (RVs). Using PHOENIX stellar models, we find that the primary has a temperature of 3460 ± 50 K and a metallicity of 0.16 ± 0.04, while the secondary has a temperature of 2510 ± 50 K and a metallicity of
0.13
−
0.11
+
0.12
. Recent work suggests this system is associated with the Hyades, giving it an older age than previous estimates. Both metallicities agree with current Hyades [Fe/H] measurements (0.11–0.21). Using stellar evolutionary models, we obtain significantly higher masses for the objects, 0.30 ± 0.15 M
⊙ and 0.08 ± 0.01 M
⊙ (84 ± 11 M
Jup), respectively. Using the RVs and a new astrometry point from Keck/NIRC2, we find that the system is likely an edge-on, moderately eccentric (
0.41
−
0.08
+
0.27
) configuration. We also estimate the C/O ratio of both objects using custom grid models, obtaining 0.42 ± 0.10 (primary) and 0.55 ± 0.10 (companion). From these results, we confirm that this system most likely went through a binary star formation process in the Hyades. The significant changes in this system's parameters since its discovery highlight the importance of high-resolution spectroscopy for both orbital and atmospheric characterization of directly imaged companions.
Funder
National Science Foundation
Publisher
American Astronomical Society