Revising Properties of Planet–Host Binary Systems. II. Apparent Near-Earth-analog Planets in Binaries Are Often Sub-Neptunes*

Author:

Sullivan KendallORCID,Kraus Adam L.ORCID

Abstract

Abstract Identifying rocky planets in or near the habitable zones of their stars (near-Earth analogs) is one of the key motivations of many past and present planet-search missions. The census of near-Earth analogs is important because it informs calculations of the occurrence rate of Earth-like planets, which in turn feed into calculations of the yield of future missions to directly image other Earths. Only a small number of potential near-Earth analogs have been identified, meaning that each planet should be vetted carefully and then incorporated into the occurrence rate calculation. A number of putative near-Earth analogs have been identified within binary-star systems. However, stellar multiplicity can bias measured planetary properties, meaning that apparent near-Earth analogs in close binaries may have different radii or instellations than initially measured. We simultaneously fit unresolved optical spectroscopy, optical speckle and near-IR adaptive optics contrasts, and unresolved photometry and retrieved revised stellar temperatures and radii for a sample of 11 binary Kepler targets that host at least one near-Earth-analog planet, for a total of 17 planet candidates. We found that 10 of the 17 planets in our sample had radii that fell in or above the radius gap, suggesting that they are not rocky planets. Only two planets retained super-Earth radii and stayed in the habitable zone, making them good candidates for inclusion in rocky-planet occurrence rate calculations.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3