Classifying High-cadence Microlensing Light Curves. I. Defining Features

Author:

Khakpash SomayehORCID,Pepper JoshuaORCID,Penny MatthewORCID,Gaudi B. ScottORCID,Street R. A.ORCID

Abstract

Abstract Microlensing is a powerful tool for discovering cold exoplanets, and the Roman Space Telescope microlensing survey will discover over 1000 such planets. Rapid, automated classification of Roman’s microlensing events can be used to prioritize follow-up observations of the most interesting events. Machine learning is now often used for classification problems in astronomy, but the success of such algorithms can rely on the definition of appropriate features that capture essential elements of the observations that can map to parameters of interest. In this paper, we introduce tools that we have developed to capture features in simulated Roman light curves of different types of microlensing events, and we evaluate their effectiveness in classifying microlensing light curves. These features are quantified as parameters that can be used to decide the likelihood that a given light curve is due to a specific type of microlensing event. This method leaves us with a list of parameters that describe features like the smoothness of the peak, symmetry, the number of peaks, and the width and height of small deviations from the main peak. This will allow us to quickly analyze a set of microlensing light curves and later use the resulting parameters as input to machine learning algorithms to classify the events.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microlensing signatures of extended dark objects using machine learning;Physical Review D;2024-06-03

2. Rubin Observatory LSST Transients and Variable Stars Roadmap;Publications of the Astronomical Society of the Pacific;2023-10-01

3. Numerically studying the degeneracy problem in extreme finite-source microlensing events;Monthly Notices of the Royal Astronomical Society;2023-03-31

4. A microlensing search of 700 million VVV light curves;Monthly Notices of the Royal Astronomical Society;2021-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3