Statistical Distribution Function of Orbital Spacings in Planetary Systems

Author:

Dietrich JeremyORCID,Malhotra RenuORCID,Apai DánielORCID

Abstract

Abstract The minimum orbital separation of planets in long-stable planetary systems is often modeled as a step function, parameterized with a single value Δ min (measured in mutual Hill radius of the two neighboring planets). Systems with smaller separations are considered unstable, and planet pairs with greater separations are considered stable. Here we report that a log-normal distribution function for Δ min , rather than a single threshold value, provides a more accurate model. From our suite of simulated planetary systems, the parameters of the best-fit log-normal distribution are μ = 1.97 ± 0.02 and σ = 0.40 ± 0.02, such that the mean, median, and mode of Δ min are 7.77, 7.17, and 6.11, respectively. This result is consistent with previous estimates for Δ min threshold values in the range ∼5–8. We find a modest dependence of the distribution of Δ min on multiplicity within the system, as well as on planetary mass ratios of the closest planet pair. The overall distribution of nearest-neighbor planetary orbital spacings (measured in the mutual Hill radii and denoted simply as Δ) in long-term stable systems is also well fit with a log-normal distribution, with parameters μ = 3.14 ± 0.03 and σ = 0.76 ± 0.02. In simulations of sets of many planets initially packed very close together, we find that the orbital spacings of long-term stable systems is statistically similar to that in the observed Kepler sample of exoplanetary systems, indicating a strong role of sculpting of planetary architectures by dynamical instabilities.

Funder

NASA ∣ Science Mission Directorate

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3