LOTUS: A (Non-) LTE Optimization Tool for Uniform Derivation of Stellar Atmospheric Parameters

Author:

Li 李 Yangyang 扬洋ORCID,Ezzeddine RanaORCID

Abstract

Abstract Precise fundamental atmospheric stellar parameters and abundance determination of individual elements in stars are important for all stellar population studies. Non–local thermodynamic equilibrium (non-LTE; hereafter NLTE) models are often important for such high precision, however, can be computationally complex and expensive, which renders the models less utilized in spectroscopic analyses. To alleviate the computational burden of such models, we developed a robust 1D, NLTE fundamental atmospheric stellar parameter derivation tool, LOTUS, to determine the effective temperature T eff, surface gravity log g , metallicity [Fe/H], and microturbulent velocity v mic for FGK-type stars, from equivalent width (EW) measurements of Fe i and Fe ii lines. We utilize a generalized curve of growth method to take into account the EW dependencies of each Fe i and Fe ii line on the corresponding atmospheric stellar parameters. A global differential evolution optimization algorithm is then used to derive the fundamental parameters. Additionally, LOTUS can determine precise uncertainties for each stellar parameter using a Markov Chain Monte Carlo algorithm. We test and apply LOTUS on a sample of benchmark stars, as well as stars with available asteroseismic surface gravities from the K2 survey, and metal-poor stars from the Gaia-ESO and R-Process Alliance surveys. We find very good agreement between our NLTE-derived parameters in LOTUS to nonspectroscopic values on average within T eff = ±30 K, and log g = ±0.10 dex for benchmark stars. We provide open access of our code, as well as of the interpolated precomputed NLTE EW grids available on Github (the software is available on GitHub 3 3 https://github.com/Li-Yangyang/LOTUS under an MIT License, and version 0.1.1 (as the persistent version) is archived in Zenodo) and documentation with working examples on the Readthedocs book.

Funder

Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3