False Planets around Giant Stars: A Case Study of Sanders 364 in M67

Author:

Zhou QijiaORCID,Latham David W.ORCID,Quinn Samuel N.ORCID,Bieryla AllysonORCID,Vanderburg AndrewORCID,Berlind Perry,Calkins Michael L.ORCID,Esquerdo Gilbert A.ORCID

Abstract

Abstract Discovering planets in sparsely populated regions of parameter space is crucial to improving our understanding of planetary formation and evolution. One such region is the subset of planets that orbit giant, evolved stars. However, some of these evolved stars are known to exhibit long-period quasiperiodic radial velocity signals, which can masquerade as signals from orbital motion due to planetary companions. In this paper, we investigate the case of Sanders 364, a K giant star in the old open cluster M67. A paper by Brucalassi et al. reports the discovery of a giant planet with a period of 121 days orbiting Sanders 364. From our analysis of a large set of independent radial velocities, we find no convincing evidence for the giant planet reported by Brucalassi et al. We did identify six long-period radial velocity signals of unclear origin, including the 121 days signal reported by Brucalassi et al., but based on our analysis, we speculate that these are quasiperiodic signals that arise from nonplanetary origins, such as stellar variability or aliasing. The results from our study of Sanders 364 suggest that the detection of true orbital motion from a long-period planetary companion requires extra care when the host star is highly evolved. We conclude by offering recommendations for future study of planetary companions around evolved host stars.

Funder

Harvard College Research Program at the Office of Undergraduate Research and Fellowships at Harvard University

Department of Astronomy at Harvard University

Department of Physics at Harvard University

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3