K2-138 g: Spitzer Spots a Sixth Planet for the Citizen Science System

Author:

Hardegree-Ullman Kevin K.ORCID,Christiansen Jessie L.ORCID,Ciardi David R.ORCID,Crossfield Ian J. M.ORCID,Dressing Courtney D.ORCID,Livingston John H.ORCID,Volk KathrynORCID,Agol EricORCID,Barclay ThomasORCID,Barentsen GeertORCID,Benneke BjörnORCID,Gorjian VaroujanORCID,Kristiansen Martti H.ORCID

Abstract

Abstract K2 greatly extended Kepler’s ability to find new planets, but it was typically limited to identifying transiting planets with orbital periods below 40 days. While analyzing K2 data through the Exoplanet Explorers project, citizen scientists helped discover one super-Earth and four sub-Neptune sized planets in the relatively bright (V = 12.21, K = 10.3) K2-138 system, all which orbit near 3:2 mean-motion resonances. The K2 light curve showed two additional transit events consistent with a sixth planet. Using Spitzer photometry, we validate the sixth planet’s orbital period of 41.966 ± 0.006 days and measure a radius of , solidifying K2-138 as the K2 system with the most currently known planets. There is a sizeable gap between the outer two planets, since the fifth planet in the system, K2-138 f, orbits at 12.76 days. We explore the possibility of additional nontransiting planets in the gap between f and g. Due to the relative brightness of the K2-138 host star, and the near resonance of the inner planets, K2-138 could be a key benchmark system for both radial velocity and transit-timing variation mass measurements, and indeed radial velocity masses for the inner four planets have already been obtained. With its five sub-Neptunes and one super-Earth, the K2-138 system provides a unique test bed for comparative atmospheric studies of warm to temperate planets of similar size, dynamical studies of near-resonant planets, and models of planet formation and migration.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3