FUMES. III. Ultraviolet and Optical Variability of M-dwarf Chromospheres

Author:

Duvvuri Girish M.ORCID,Pineda J. SebastianORCID,Berta-Thompson Zachory K.ORCID,France KevinORCID,Youngblood AllisonORCID

Abstract

Abstract We obtained ultraviolet and optical spectra for nine M dwarfs across a range of rotation periods to determine whether they showed stochastic intrinsic variability distinguishable from flares. The ultraviolet spectra were observed during the Far Ultraviolet M-dwarf Evolution Survey Hubble Space Telescope program using the Space Telescope Imaging Spectrograph. The optical observations were taken from the Apache Point Observatory 3.5 m telescope using the Dual Imaging Spectrograph and from the Gemini South Observatory using the Gemini Multi-Object Spectrograph. We used the optical spectra to measure multiple chromospheric lines: the Balmer series from Hα to H10 and the Ca ii H and K lines. We find that after excising flares, these lines vary on the order of 1%–20% at minute-cadence over the course of an hour. The absolute amplitude of variability was greater for the faster rotating M dwarfs in our sample. Among the five stars for which we measured the weaker Balmer lines, we note a tentative trend that the fractional amplitude of the variability increases for higher-order Balmer lines. We measured the integrated flux of multiple ultraviolet emission features formed in the transition region: the N v, Si iv, and C iv resonance line doublets, and the C ii and He ii multiplets. The signal-to-noise ratio of the UV data was too low for us to detect nonflare variability at the same scale and time cadence as the optical. We consider multiple mechanisms for the observed stochastic variability and propose both observational and theoretical avenues of investigation to determine the physical causes of intrinsic variability in the chromospheres of M dwarfs.

Funder

NASA

Space Telescope Science Institute

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3