The All-sky Spectrometer of Hot Cosmic Plasma

Author:

Kambarova Zh. T.ORCID,Saulebekov A. O.,Trubitsyn A. A.

Abstract

Abstract The main instruments for analyzing the processes occurring in cosmic plasma are energy and mass analyzers of charged particle beams. The analyzers’ operation is based on the separation of charged particles according to the energies of their motion or their masses in electric or magnetic fields. Currently, the top-hat analyzer is considered the main instrument for obtaining information about the state of cosmic plasma. However, it has a number of disadvantages: a significant time cycle for registering angular dependences in a total solid angle of 4π sr and low accuracy of determining the polar angles, which are associated with the need to rotate the analyzer during measurements. Over the past 20 years, plasma analyzers with a large viewing angle have been developed as an alternative to the top-hat analyzer. The design of the analyzer proposed in this work is capable of measuring plasma characteristics in a solid angle of 2π sr in one act of data registration. The all-sky spectrometer of hot cosmic plasma consists of two stages: the first stage is a conical lens of an original design, which serves to transform an extremely wide entrance flow of particles into a narrow cone-shaped beam; the second hexapole-cylindrical stage plays the role of an energy analyzer of a narrow cone-shaped flow. The paper describes the calculations and modeling of the proposed analyzer on the basis of original numerical and approximate analytical methods for designing systems of electron and ion optics. The main parameters of the device are calculated.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3