CSST Strong-lensing Preparation: A Framework for Detecting Strong Lenses in the Multicolor Imaging Survey by the China Survey Space Telescope (CSST)

Author:

Li Xu,Sun Ruiqi,Lv Jiameng,Jia PengORCID,Li NanORCID,Wei Chengliang,Zou Hu,Er XinzhongORCID,Chen YunORCID,Ban Zhang,Fang Yuedong,Guo Qi,Liu Dezi,Li Guoliang,Lin Lin,Li Ming,Li Ran,Li Xiaobo,Luo Yu,Meng Xianmin,Nie Jundan,Qi ZhaoxiangORCID,Qiu Yisheng,Shao LiORCID,Tian HaoORCID,Wang Lei,Wang WeiORCID,Xian Jingtian,Xu Youhua,Zhang Tianmeng,Zhang Xin,Zhou Zhimin

Abstract

Abstract Strong gravitational lensing is a powerful tool for investigating dark matter and dark energy properties. With the advent of large-scale sky surveys, we can discover strong-lensing systems on an unprecedented scale, which requires efficient tools to extract them from billions of astronomical objects. The existing mainstream lens-finding tools are based on machine-learning algorithms and applied to cutout-centered galaxies. However, according to the design and survey strategy of optical surveys by the China Space Station Telescope (CSST), preparing cutouts with multiple bands requires considerable efforts. To overcome these challenges, we have developed a framework based on a hierarchical visual transformer with a sliding window technique to search for strong-lensing systems within entire images. Moreover, given that multicolor images of strong-lensing systems can provide insights into their physical characteristics, our framework is specifically crafted to identify strong-lensing systems in images with any number of channels. As evaluated using CSST mock data based on a semianalytic model named CosmoDC2, our framework achieves precision and recall rates of 0.98 and 0.90, respectively. To evaluate the effectiveness of our method in real observations, we have applied it to a subset of images from the DESI Legacy Imaging Surveys and media images from Euclid Early Release Observations. A total of 61 new strong-lensing system candidates are discovered by our method. However, we also identified false positives arising primarily from the simplified galaxy morphology assumptions within the simulation. This underscores the practical limitations of our approach while simultaneously highlighting potential avenues for future improvements.

Funder

MOST ∣ National Key Research and Development Program of China

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3