The Transformative Journey of HD 93521

Author:

Gies Douglas R.ORCID,Shepard KatherineORCID,Wysocki PeterORCID,Klement RobertORCID

Abstract

Abstract HD 93521 is a massive, rapidly rotating star that is located about 1 kpc above the Galactic disk, and the evolutionary age for its estimated mass is much less than the time of flight if it was ejected from the disk. Here we present a reassessment of both the evolutionary and kinematical timescales for HD 93521. We calculate a time of flight of 39 ± 3 Myr based upon the distance and proper motions from Gaia EDR3 and a summary of radial velocity measurements. We then determine the stellar luminosity using a rotational model combined with the observed spectral energy distribution and distance. A comparison with evolutionary tracks for rotating stars from Brott et al. yields an evolutionary age of about 5 ± 2 Myr. We propose that the solution to the timescale discrepancy is that HD 93521 is a stellar merger product. It was probably ejected from the Galactic disk as a close binary system of lower-mass stars that eventually merged to create the rapidly rotating and single massive star we observe today.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Evolution of Massive Binary Stars;Annual Review of Astronomy and Astrophysics;2024-09-13

2. A massive helium star with a sufficiently strong magnetic field to form a magnetar;Science;2023-08-18

3. The IACOB project;Astronomy & Astrophysics;2023-03-23

4. Dynamical Masses of the Primary Be Star and Secondary sdB Star in the Single-lined Binary κ Dra (B6 IIIe);The Astrophysical Journal;2022-11-01

5. Birth of a Be star: an APOGEE search for Be stars forming through binary mass transfer;Monthly Notices of the Royal Astronomical Society;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3