The Anatomy of an Unusual Edge-on Protoplanetary Disk. II. Gas Temperature and a Warm Outer Region

Author:

Flores C.ORCID,Duchêne G.ORCID,Wolff S.ORCID,Villenave M.ORCID,Stapelfeldt K.ORCID,Williams J. P.ORCID,Pinte C.ORCID,Padgett D.ORCID,Connelley M. S.ORCID,van der Plas G.ORCID,Ménard F.ORCID,Perrin M. D.ORCID

Abstract

Abstract We present high-resolution 12CO and 13CO 2–1 ALMA observations, as well as optical and near-infrared spectroscopy, of the highly inclined protoplanetary disk around SSTC2D J163131.2–242627. The spectral type we derive for the source is consistent with a 1.2 M star inferred from the ALMA observations. Despite its massive circumstellar disk, we find little to no evidence for ongoing accretion on the star. The CO maps reveal a disk that is unusually compact along the vertical direction, consistent with its appearance in scattered light images. The gas disk extends about twice as far away as both the submillimeter continuum and the optical scattered light. CO is detected from two surface layers separated by a midplane region in which CO emission is suppressed, as expected from freeze-out in the cold midplane. We apply a modified version of the tomographically reconstructed distribution method presented by Dutrey et al. to derive the temperature structure of the disk. We find a temperature in the CO-emitting layers and the midplane of ∼33 K and ∼20 K at R < 200 au, respectively. Outside of R > 200 au, the disk’s midplane temperature increases to ∼30 K, with a nearly vertically isothermal profile. The transition in CO temperature coincides with a dramatic reduction in the submicron and submillimeter emission from the disk. We interpret this as interstellar UV radiation providing an additional source of heating to the outer part of the disk.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3